Course Type	Course Code	Name of Course	L	T	P	Credit
DP	NMCC505	Fundamentals of Machine Learning Practical	0	0	3	1.5`

Course Objective

To impart knowledge of how to apply software to solve real life problem using Machine Learning tools

Learning Outcomes

Students will learn how to implement Machine Learning techniques using R/Python.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
	Applications of Regression analysis,	09	To learn implementation of different
1.	Logistics Regression, Decision Tree and		regression and classification techniques
1.	SVM in Data Analytics.		
	A 1: .: CB 1 C	0.6	T. 1 1
2.	Application of Random forest, bagging	06	To learn implementation of different ensemble methods
	and boosting methods	0.6	
2	Applications of Non-linear Regression	06	To learn implementation of lazy
3.	analysis -knn methods		algorithms in regression and classification problems
	Applications of PCA, LDA, ICA in Data	07	To learn implementation of different
4.	Analytics	07	dimension reduction techniques
	Applications of Unsupervised Learning	07	To learn implementation of different
5.	in Data Analytics-different clustering		clustering methods
	methods		
	Applications of Neural Network and	07	To learn implementation of feed-
6.	Deep learning in Data Analytics.		forward neural network in regression
			and classification problems
	Total	42	

Text Books:

1. Sebastian Raschka and Vahid Mirjalili, Python Machine Learning, Packt, 2017

Reference Books:

1. P. Muller and L Massaron, Machine Learning (in Python and R), Jhon Wiley & Sons, 2016